Што значыць, што адна мова больш магутная за іншую?
Паняцце, што адна мова больш «магутная», чым іншая, асабліва ў кантэксце іерархіі Хомскага і кантэкстна-залежных моў, адносіцца да выразнай здольнасці фармальных моў і вылічальных мадэляў, якія іх распазнаюць. Гэта паняцце з'яўляецца фундаментальным для разумення тэарэтычных межаў таго, што можа быць вылічана або выражана ў розных фармальных формах
Прывядзіце прыклад кантэкстна-залежнай мовы і растлумачце, як яе можна распазнаць кантэкстна-залежнай граматыкай.
Кантэкстна-залежная мова - гэта тып фармальнай мовы, які можа быць распазнаны кантэкстна-залежнай граматыкай. У іерархіі фармальных моў Хомскага кантэкстна-залежныя мовы больш магутныя, чым звычайныя мовы, але менш магутныя, чым мовы з рэкурсіўным пералічэннем. Яны характарызуюцца правіламі, якія дазваляюць маніпуляваць сімваламі ў залежнасці ад кантэксту,
Чым мовы тыпу 0, таксама вядомыя як мовы з рэкурсіўным пералічэннем, адрозніваюцца ад іншых тыпаў моў з пункту гледжання складанасці вылічэнняў?
Мовы тыпу 0, таксама вядомыя як мовы з рэкурсіўным пералічэннем, адрозніваюцца ад іншых тыпаў моў з пункту гледжання складанасці вылічэнняў некалькімі спосабамі. Каб зразумець гэтыя адрозненні, важна добра разумець іерархію Хомскага і кантэкстна-залежныя мовы. Іерархія Хомскага - гэта класіфікацыя фармальных моў, заснаваная на тыпах
Што такое іерархія моў Хомскага і як яна класіфікуе фармальныя граматыкі на аснове іх генератыўнай здольнасці?
Іерархія моў Хомскага - гэта класіфікацыйная сістэма, якая класіфікуе фармальныя граматыкі на аснове іх генератыўнай здольнасці. Ён быў прапанаваны Ноамам Хомскім, вядомым лінгвістам і інфарматыкам, у 1950-х гадах. Іерархія складаецца з чатырох узроўняў, кожны з якіх прадстаўляе іншы клас фармальных моў. Гэтыя ўзроўні вядомыя як тып-3 (звычайны), тып-2
Чаму звычайныя мовы лічацца трывалай асновай для разумення тэорыі складанасці вылічэнняў?
Звычайныя мовы лічацца трывалай асновай для разумення тэорыі складанасці вылічэнняў з-за іх уласцівай прастаты і дакладна вызначаных уласцівасцей. Звычайныя мовы адыгрываюць важную ролю ў вывучэнні складанасці вылічэнняў, паколькі яны з'яўляюцца адпраўной кропкай для аналізу складанасці больш складаных моў і праблем. Адна з асноўных прычын, чаму звычайныя мовы